鋰離子電池的正、負極極片設(shè)計參數(shù)主要包括活性物質(zhì)負載、孔隙率、厚度以及活性物質(zhì)、粘合劑和導(dǎo)電添加劑之間的比例。在電極配方方面,文獻已經(jīng)報道了很多,比如石墨-LFP體系,就有40多種配方,活性材料的比例從60%到95%,粘合劑的比例從2%到25%,導(dǎo)電添加劑的比例從3%到30%,這些配方范圍特別大。而在企業(yè)里面,電極配方也是非常機密的,無論技術(shù)交流還是具體合作,各單位也極少涉及到具體的材料體系和配方。
那么,電極配方到底有什么理論指導(dǎo)嗎?各廠家又是怎么確定具體配方的?我存在困惑,一直來在學(xué)習(xí)這個問題,期望尋找答案。我所經(jīng)歷的情況,基本都是通過大量實驗,優(yōu)化總結(jié)的電極配方。今天分享一點具體內(nèi)容,拋磚引玉,歡迎大家討論。
鋰離子電池極片可看成一種復(fù)合材料,主要由以下幾部分組成:(1)活性物質(zhì)顆粒,嵌入或脫出鋰離子,正極顆粒提供鋰源,負極顆粒接受鋰離子;(2)導(dǎo)電劑和黏結(jié)劑相互混合的組成相(碳膠相),粘結(jié)劑連結(jié)活物質(zhì)顆粒,涂層與集流體,導(dǎo)電劑導(dǎo)通電子;(3)孔隙,填滿電解液,這是極片中鋰離子傳輸?shù)耐ǖ馈?/div>
電極中活性物質(zhì)、導(dǎo)電劑和粘結(jié)劑之間的比例以及它們的分布狀態(tài)會影響電子、離子的傳輸,電極界面的電化學(xué)反應(yīng)等,從而影響電池性能。理想的電解微觀結(jié)構(gòu)如圖1所示:導(dǎo)電劑和粘結(jié)劑充分分散,均勻分布活性物質(zhì)顆粒表面,導(dǎo)電劑相互連通形成電子傳輸網(wǎng)絡(luò),粘結(jié)劑分布均勻,確保顆粒涂層的結(jié)合強度和機械穩(wěn)定性高,活性物質(zhì)顆粒保持原始形貌并分散均勻,整齊排列,形成從電極表面到集流體的垂直孔道,確保電解液充分浸潤,實現(xiàn)鋰離子的快速傳導(dǎo)。
此理論是指只有當(dāng)相鄰格子空隙被導(dǎo)電劑占據(jù)后,這些空隙才能形成一個導(dǎo)電網(wǎng)絡(luò)。假設(shè)格子空隙被導(dǎo)電劑占據(jù)的概率是P,占據(jù)概率P的增大可通過改變導(dǎo)電劑的形狀來實現(xiàn)。當(dāng)P增大到某臨界值Pc時,就會發(fā)生逾滲轉(zhuǎn)變,體系電阻率會突然減小。導(dǎo)電劑的形態(tài)和種類眾多,顆粒狀炭黑和導(dǎo)電石墨是零維結(jié)構(gòu),而碳纖維和碳納米管是一維結(jié)構(gòu),石墨烯是二維片狀結(jié)構(gòu),導(dǎo)電劑的微觀結(jié)構(gòu)特征與分布是影響導(dǎo)電性能的重要因素。細小顆粒狀的零維結(jié)構(gòu)的導(dǎo)電劑是點接觸、線狀一維結(jié)構(gòu)導(dǎo)電劑是線接觸,片狀二維結(jié)構(gòu)導(dǎo)電劑是面接觸。顆粒狀導(dǎo)電劑更容易在活性物質(zhì)顆粒表面均勻分散,與活性物質(zhì)緊密接觸,形成良好的短程電子通路,但是在整個電極的厚度方向不利于形成長程的電子傳輸通道。而一維結(jié)構(gòu)的導(dǎo)電劑與活性物質(zhì)難形成緊密接觸,短程電子傳導(dǎo)差,一維長鏈結(jié)構(gòu)使長程電子傳導(dǎo)性能好。石墨烯具有很高的電導(dǎo)率及二維超薄的結(jié)構(gòu)特征,通過與活性物質(zhì)的“面—點”接觸,使得很少含量的石墨烯就可以有效提高電極的電子電導(dǎo)率,但其分散困難,團聚的石墨烯會對電極內(nèi)部鋰離子的傳輸產(chǎn)生阻礙,影響高倍率條件下電池性能的發(fā)揮。綜合利用各種形態(tài)導(dǎo)電劑的優(yōu)點,采用多種結(jié)構(gòu)的混合導(dǎo)電劑有利于形成完整的導(dǎo)電網(wǎng)絡(luò)
球狀導(dǎo)電劑的臨界值Pc(滲流閾值)比纖維狀導(dǎo)電劑大很多。因此,纖維狀的CNTs和VGCF作為導(dǎo)電劑時,由于其粒子長徑比較大,在格子逾滲理論模型中,1 根CNIs或VGCF可同時占據(jù)多個相鄰空隙,而球狀的炭黑粒子1次只能占據(jù)1個空隙且只有相鄰空隙被占據(jù)后才能形成導(dǎo)電網(wǎng)絡(luò)。因此,同等條件下,纖維狀的CNTs 和GCF導(dǎo)電劑形成網(wǎng)絡(luò)可能性比炭黑粒子的可能性大很多,如圖2所示。